Experimental and numerical characterization of hydro-mechanical properties of rock fractures : The effect of the sample size on roughness and hydraulic aperture

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTorkan, Masoud
dc.contributor.authorUotinen, Lauri
dc.contributor.authorBaghbanan, Alireza
dc.contributor.authorRinne, Mikael
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.groupauthorMineral Based Materials and Mechanicsen
dc.date.accessioned2025-01-10T15:18:44Z
dc.date.available2025-01-10T15:18:44Z
dc.date.issued2025-02
dc.descriptionPublisher Copyright: © 2024 The Author(s)
dc.description.abstractThis paper investigated fluid flow in low-stress conditions through rock fractures in Kuru granite measuring 25 cm × 25 cm. Physical aperture and roughness were measured using high-precision photogrammetry. Anisotropy in roughness was observed in two perpendicular directions. Physical aperture under normal stresses was measured, and fracture closure was compared with linear variable displacement transducer (LVDT) measurements, showing good agreement. Hydromechanical tests exhibited nonlinear behavior between fluid pressure gradient and flow rate, following the Forchheimer equation. Applying normal stress resulted in decreased hydraulic aperture and increased nonlinearity of fluid flow. Experimental hydromechanical tests also revealed anisotropy in perpendicular directions, aligning with fracture roughness measurements. Photogrammetric models, aided COMSOL simulations, closely matched the experimental results. Increased stress induced channeled flow and greater tortuosity. Validation of the numerical model allowed simulations on larger fractures. A 2 m × 1 m granite fracture studied scale effects, with the rough surface duplicated and shifted by 350 μm to align with initial aperture measurements of 25 cm × 25 cm samples. Fluid flow simulations assessed subsample sizes (5 cm–100 cm), showing size-dependent variations in roughness, hydraulic aperture, and non-Darcy coefficient, stabilizing beyond 30 cm. This underscores sample size's role in parameter stabilization beyond a 30 cm scale.en
dc.description.versionPeer revieweden
dc.format.extent18
dc.format.mimetypeapplication/pdf
dc.identifier.citationTorkan, M, Uotinen, L, Baghbanan, A & Rinne, M 2025, ' Experimental and numerical characterization of hydro-mechanical properties of rock fractures : The effect of the sample size on roughness and hydraulic aperture ', International Journal of Rock Mechanics and Mining Sciences, vol. 186, 106009 . https://doi.org/10.1016/j.ijrmms.2024.106009en
dc.identifier.doi10.1016/j.ijrmms.2024.106009
dc.identifier.issn1365-1609
dc.identifier.issn1873-4545
dc.identifier.otherPURE UUID: faeb5af2-ca73-423c-a27e-fb6fe57cffca
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/faeb5af2-ca73-423c-a27e-fb6fe57cffca
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85213242235&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/169707696/1-s2.0-S1365160924003745-main.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132829
dc.identifier.urnURN:NBN:fi:aalto-202501101125
dc.language.isoenen
dc.publisherPergamon Press
dc.relation.ispartofseriesInternational Journal of Rock Mechanics and Mining Sciences
dc.relation.ispartofseriesVolume 186
dc.rightsopenAccessen
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordExperimental and numerical tests
dc.subject.keywordHydraulic aperture
dc.subject.keywordPhotogrammetry
dc.subject.keywordPhysical aperture
dc.subject.keywordRoughness
dc.subject.keywordScale effect
dc.titleExperimental and numerical characterization of hydro-mechanical properties of rock fractures : The effect of the sample size on roughness and hydraulic apertureen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files